
Erasable coercions:
a unified approach to type systems

Julien Cretin

January 30, 2014

1 / 34



Background: machine language

A machine
executes programs
written in machine language

Problem
programs may crash, and
programs in machine language are hard to write.
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Background: high-level language

In practice, programs are
written in high-level languages (C, Java, OCaml)
compiled to low-level ones (x86, ARM, bytecode)

Thus, programs are
easier to write
more portable

Problem
For most high-level languages, programs may still crash.
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Background: type system
Therefore, languages come with a type system.

A type system
defines program type annotations
ensures that well-typed programs do not crash

The compiler of a typed language
takes as input a program with type annotations,
checks that the program is well-typed,
erases type annotations, and
compiles the program.

Compiled well-typed programs do not crash (if the compiler is correct).
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In my PhD
I consider one particular language:

Lambda Calculus
a minimal model of computation
at the root of functional programming languages (OCaml, Haskell, ...)

Still, our approach is not restricted to the Lambda Calculus.
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Type systems are a maze
There are many type systems just for the Lambda Calculus:

ML
System F
System F-sub
System F-omega
System F-eta
MLF
... (the list grows as we speak)

Why does one language need so many type systems?
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Type systems are compromises

Comparison criteria
expressiveness: what is the set of well-typed terms?

inference: how many annotations may be omitted?
simplicity: are annotations simple to write and understand?

Inference and simplicity
mainly matter for surface type systems
do not matter for kernel type systems

We study kernel type systems.
A kernel type system may have different surface type systems.
Translating from surface type systems to kernel type systems is easy.
Kernel type systems are better suited for meta-theory.
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Kernel type systems
Simply Typed

Lambda Calculus Intersection typesLinear types

ML

System F

Constraint ML

System F-eta

System F-sub

MLF System F-omega

Dependent types

System FC (core GHC)

System Fp
ι

System Fcc

Type system features
polymorphism, η-expansion, subtyping, and coercions.
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Outline
Prelude Lambda Calculus

I definition
I example

Part I Syntactical approach (System Fp
ι )

I identify a set of atomic features
I present them as composable coercions
I define a unified framework of coercions

Part II Semantical approach (System Fcc)
I general coercion abstraction
I first-class coercions
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Lambda Calculus: terms
We only study pairs and functions, but the usual constructs may be added.

Terms
(active edge) Product (gray) Arrow (black)

Constructors
(output)

pairs

〈 , 〉

a1 a2

abstractions

λx

a

Destructors
(input)

projections

π1

a

π2

a
applications

@

a1 a2

variables

x
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Lambda Calculus: reduction

Reduction (when two active edges of the same sort meet)

πi

〈 , 〉

a1 a2

ai

@

λx

a

b

x x...

a

b b...

Errors (when two active edges of different sorts meet)

πi

λx

a

@

〈 , 〉

a1 a2

b
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Lambda Calculus: example
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Strong reduction
Although all programming languages execution is in weak reduction
(reduction does not proceed under abstractions),
we should study meta-theoretical properties for strong reduction.

We may reduce
anywhere (in particular under abstractions)
in any order

Studying strong reduction is much harder, but it
gives a better understanding of the language and type system
looks at potentially hidden errors as usual type systems do
(λx 〈x , x〉 x is an error in strong reduction, but not in weak reduction)
justifies a certain class of optimizations
describes all reduction strategies (in particular weak ones)
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Part I: Syntactical approach
We now can define our unified framework of coercions

identifying a set of atomic features
presenting them as composable coercions

This approach is syntactical.
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Framework idea: we distinguish two sorts of typing rules

Computational rules

(Γ,Σi ` ai : τi )
i∈1..n J1 . . . Jm

Γ ` node(a1, . . . an) : ρ

Erasable rules

Γ,Σ ` a : τ J1 . . . Jm

Γ ` a : ρ

We factor all erasable rules into a unique erasable rule:

Unique erasable rule
TermCoer

Γ,Σ ` a : τ Γ ` (Σ ` τ) . ρ

Γ ` a : ρ

Coercion rules

J1 . . . Jm

Γ ` (Σ ` τ) . ρ

The unique erasable rule looks like the usual term subtyping rule.
Besides changing the type, coercions may also extend the
environment.
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Framework gain: composable features
It looks like we only played with the syntax of typing rules.

However, this change makes a clear distinction between terms and type
annotations: terms are totally absent from coercion rules.

J1 . . . Jm

Γ ` (Σ ` τ) . ρ

More essentially,
rule TermCoer enforces a unique interface for all erasable features:

Γ ` (Σ ` τ) . ρ

this change is a preliminary to have composable features.
this enables to decompose existing features into atomic parts.

16 / 34



Framework gain: composable features
It looks like we only played with the syntax of typing rules.

However, this change makes a clear distinction between terms and type
annotations: terms are totally absent from coercion rules.

J1 . . . Jm

Γ ` (Σ ` τ) . ρ

More essentially,
rule TermCoer enforces a unique interface for all erasable features:

Γ ` (Σ ` τ) . ρ

this change is a preliminary to have composable features.
this enables to decompose existing features into atomic parts.

16 / 34



Framework gain: composable features
It looks like we only played with the syntax of typing rules.

However, this change makes a clear distinction between terms and type
annotations: terms are totally absent from coercion rules.

J1 . . . Jm

Γ ` (Σ ` τ) . ρ

More essentially,
rule TermCoer enforces a unique interface for all erasable features:

Γ ` (Σ ` τ) . ρ

this change is a preliminary to have composable features.
this enables to decompose existing features into atomic parts.

16 / 34



Framework: all term typing rules
STLC (canonical, minimal set of typing rules)

Γ τ1 × τ2

〈 , 〉

a1
Γ τ1

a2
Γ τ2

Γ τi

πi

a
Γ τ1 × τ2

Γ τ → ρ

λx

a
Γ, (x : τ) ρ

Γ ρ

@

a
Γ τ → ρ

b
Γ τ

Γ Γ(x)

x

Term coercion rule

Γ ρ

G

a
Γ,Σ τ

+Σ τ

Γ ρ

G

a
Γ,Σ τ

+Σ τ


TermCoer

Γ,Σ ` a : τ G ⇒ Γ ` (Σ ` τ) . ρ

Γ ` a : ρ
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Feature: polymorphism
We write τ . ρ for (∅ ` τ) . ρ. This is actually how subtyping is encoded.
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Γ ∀α τ

Λα

+ α τ Gen
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OldInst
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[ρ]

+∅ ∀α τ Inst

[ρ] ⇒ Γ ` ∀α τ . τ [α/ρ]

STLC + polymorphism = System F
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Extending the framework
We internalize the reflexivity and transitivity of coercions.

Coercion rules

Γ τ

♦

+∅ τ Refl
♦ ⇒ Γ ` τ . τ

if

Γ τ3

G2

G1

+Σ1 τ1

Γ,Σ2 τ2

+Σ2 τ2

premises

then
Γ τ3

G2 ◦ G1

+Σ2,Σ1 τ1

conclusion

Trans
G2 ⇒ Γ ` (Σ2 ` τ2) . τ3

G1 ⇒ Γ,Σ2 ` (Σ1 ` τ1) . τ2

G2 ◦ G1 ⇒ Γ ` (Σ2,Σ1 ` τ1) . τ3

These rules are now part of the framework.
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Feature: eta-expansion (rules)
Eta-expansion is at the root of subtyping.

Coercion rules
EtaProd

G1 ⇒

Γ ` (Σ ` τ1) . ρ1

G2 ⇒

Γ ` (Σ ` τ2) . ρ2

G1 × G2 ⇒

Γ ` (Σ ` τ1 × τ2) . ρ1 × ρ2

EtaArr

G1 ⇒

Γ,Σ ` ρ1 . τ1

G2 ⇒

Γ ` (Σ ` τ2) . ρ2

G1 → G2 ⇒

Γ ` (Σ ` τ1 → τ2) . ρ1 → ρ2

These coercion rules extend the subtyping congruence rules of
computational types to our notion of coercions.

Note: You need one such rule for each of your computational types.
20 / 34
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Feature: eta-expansion (consequences)

STLC + polymorphism + eta-expansion ≡ System Fη (Mitchell 1988)

Our presentation is improved:
(thanks to the use of coercions instead of just subtyping)

polymorphic type congruence rule is derivable:

+ α

∀α τ
τ

[α]

ρ
G

∀αρ
Λα

Λα ◦ G ◦ [α]

distributivity rules are derivable:

([α]→ Λα) ◦ [α] (Λα× Λα) ◦ [α]
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Feature: lower bounded polymorphism
Lower bounded polymorphism is a form of coercion abstraction.

Coercion rules
LowerInst

Γ ` (σ . α)[α/ρ]

Γ ` ∀(α / σ) τ . τ [α/ρ]

LowerGen
Γ ` (α / σ ` τ) . ∀(α / σ) τ

22 / 34



Feature: lower bounded polymorphism
Lower bounded polymorphism is a form of coercion abstraction.

Coercion rules
LowerInst

Γ ` (σ . α)[α/ρ]

Γ ` ∀(α / σ) τ . τ [α/ρ]

LowerGen
Γ ` (α / σ ` τ) . ∀(α / σ) τ

22 / 34



Feature: lower bounded polymorphism
Lower bounded polymorphism is a form of coercion abstraction.

Coercion rules
LowerInst

Γ ` (σ . α)[α/ρ]

Γ ` ∀(α / σ) τ . τ [α/ρ]

LowerGen
Γ ` (α / σ ` τ) . ∀(α / σ) τ

STLC + lower bounded polymorphism
≡ MLF (Le Botlan, Rémy, Yakobowski, 2003-2010)

This permits to prove the strong normalization of MLF.
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Feature: upper bounded polymorphism
Upper bounded polymorphism is also a form of coercion abstraction.

Coercion rules
UpperInst

Γ ` (α . σ)[α/ρ]

Γ ` ∀(α . σ) τ . τ [α/ρ]

UpperGen
Γ ` (α . σ ` τ) . ∀(α . σ) τ
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Coercion rules
UpperInst

Γ ` (α . σ)[α/ρ]

Γ ` ∀(α . σ) τ . τ [α/ρ]

UpperGen
Γ ` (α . σ ` τ) . ∀(α . σ) τ

STLC + eta-expansion + upper bounded polymorphism
) System F<: (Canning, Cook, Hill, Olthoff, Mitchell, 1989)

Our version is more expressive than all variants of F<: because coercions
are composable, i.e. distributivity and congruence rules are derivable.
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Properties: bisimulation
We can define a reduction relation M  N for explicit terms.
We label reduction steps with

ι (iota) for erasable steps
β (beta) for computational steps

Bisimulation (how explicit and implicit reduction relations relate)

M N

a b

β
explicit:

implict:

M N

a = b

ι M N

a b

ι
?

β

Forward simulation Backward simulation

We write a (resp. b) for the type erasure of M (resp. N).
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Properties: soundness and strong normalization
We prove soundness with the usual scheme: preservation + progress.

preservation: reduction preserves well-typedness
progress: errors are not well-typed

Since explicit terms represent typing derivations, the explicit version of
these two lemmas is much simpler to prove than the implicit version.

We factor the difficulties in the bisimulation lemma, and prove the implicit
versions from the explicit ones.

Strong normalization is proved by reification into System F.
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System Fp
ι (POPL 2012)
Erasable feature F Fη MLF ) F<: Fp

ι

Polymorphism √ √ - - √

Eta-expansion - √ - √ √

Bottom - - √ - √

Top - - - √ √

Lower bounded polymorphism - - √ - √

Upper bounded polymorphism - - - √ √

We have a general framework with
a clear distinction between programs and type annotations,
composable modular coercion rules (for all erasable features),
the preservation, progress, and bisimulation properties,
strongly normalizing, and
generalizing MLF, F<:, and Fη (thus ML and F)
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Part II
In this general approach to coercions, System Fp

ι seems a local optimal
(with respect to coercion abstraction) that is syntactical.

System Fp
ι can only model bounded polymorphism with a single bound,

which does not even cover subtyping constraints in ML.

We now lift this restriction following a semantical approach.
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Coherent polymorphism
We get general coercion abstraction by simultaneously abstracting over
types and coercions.

We factor this operation with coherent polymorphic types ∀(α : κ) τ using
kinds and propositions.

κ ::= 1 | κ× κ | ? | {α : κ | P} Kinds
P ::= > | P ∧ P | (Σ ` τ) . τ Propositions

Examples
System F: ∀αρ becomes ∀(α : ?) ρ

MLF: ∀(α / τ) ρ becomes ∀(α : {β : ? | τ . β}) ρ
Constraint ML: ∀(α : {β : ? | τ1 . β ∧ β . τ2}) ρ is new

∀(α : {β : ?× ? | π1 β . (π1 β)→ (π2 β)}) ρ is new
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Why coherence?
We write τ ≡ ρ for erasable isomorphisms. It desugars to τ . ρ ∧ ρ . τ .

Abstracting over
{α : ? | (α ≡ α→ α) ∧ (α ≡ α× α)} looses soundness
(which we must forbid)
{α : ? | α ≡ α→ α} looses normalization
(which we may want to forbid)

Coherence
A type abstraction over κ is coherent if there is a witness ρ of kind κ.
(if κ is {α : ? | α . τ}, this implies the existence of a coercion of type ρ . τ)

Notice that coherence holds by construction in System Fp
ι

(witnesses are either top or bottom).
Coherence is a premise of the type abstraction rule in System Fcc
(it is undecidable in the general case).
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Incoherent polymorphism
Some type system features (such as GADTs) rely on blocking constructs.
To study them, we extend our calculus with simple blocking and
unblocking constructs.

Blocks (typing rules and reduction rule)

∂·

a
Γ, (α : κ) τ

Γ Π(α : κ) τ

κ coherent

·♦

a
Γ Π(α : κ) τ

Γ τ [α/ρ] ·♦

∂·

a

a

This construct is similar to the zero-cost abstraction of FC (Peyton Jones,
Vytiniotis, 2011).

Note: This construct breaks confluence, but confluence can easily be restored.
30 / 34



System Fcc
We have a general framework with

a clear distinction between programs and annotations,
composable first-class coercion propositions,
a quite rich logic (quantifiers and coinduction),
soundness and strong normalization, and
generalizing Fp

ι and Constraint ML (thus MLF, F<:, Fη, ML, and F)
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Features not presented in this talk
Computational features (sum, unit, and void types) are easy.

Erasable features
Type language:

top and bottom types (easy)
equi-recursive types (requires step-indexed semantics)
(partially done) function types as in Fω

Proposition language:
polymorphic propositions (easy)
existential propositions (derives from coherence and constrained kind)
coinduction (requires step-indexed semantics)
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Formalization
The soundness and normalization results are shown using a semantic
approach. Both proofs are similar, largely shared, and formalized in Coq.

Techniques
normalization uses reducibility candidates (Tait’s method)
soundness generalizes step-indexed techniques for recursive types
(Appel, McAllester, 2001) to strong reduction
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Future work
There is little work to have a complete kernel type system:

Redesign function types
Verify that side effects can be added (with value restriction)

Some interesting research remain to be done:
Primitive existential types (call-by-constructor reduction)
Higher-order recursive types
Which restrictions of System Fcc would allow a syntactical approach?
Intersection types need multi-premises erasable rules (partially
explored, design parallel to polymorphism)
Dependent type version of the framework?
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Extra slides

Extra slides
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Intersection types

Intro
Γ ` a : τ1 Γ ` a : τ2

Γ ` a : τ1 ∩ τ2

Elim
Γ ` a : τ1 ∩ τ2

Γ ` a : τi

Coercions Γ ` (Σ ` τ) . ρ now become Γ ` {Σi ` τi}i . ρ
which can be understood as Γ `

∧
i (Σi ` τi ) . ρ.

Intro
Γ ` {τ1, τ2} . τ1 ∩ τ2

Elim
Γ ` τ1 ∩ τ2 . τi

Fusion
Γ ` {τ, . . . τ} . ρ

Γ ` τ . ρ

Intro
Γ ` (α ` τ) . ∀α τ

Elim
Γ ` ∀α τ . τ [α/ρ]

Weak
Γ ` (Σ ` τ) . ρ

Γ ` τ . ρ
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Intersection types: terms
The term typing rules are done point-wise and written a : {Γi ` τi}i

TermVar
x : {Γi ` Γi (x)}i

TermLam
a : {Γi , (x : τi ) ` ρi}i

λx a : {Γi ` τi → ρi}i

TermApp
a : {Γi ` τi → ρi}i b : {Γi ` τi}i

a b : {Γi ` ρi}i

TermCoer
a : { {Γi ,Σj ` τj}j }i {Γi ` {Σj ` τj}j . ρi}i

a : {Γi ` ρi}i
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Intersection types: coercions

Trans{
Γ,Σ2i ` {Σ1j ` τ1j}j . τ2i

}i
Γ ` {Σ2i ` τ2i}i . τ3

Γ `
{
{Σ2i ,Σ1j ` τ1j}j

}i
. τ3

Weak
Γ ` {Σ ` τ, . . .} . ρ

Γ ` τ . ρ

EtaArr{
Γ,Σi ` τ ′ . τi

}i
Γ ` {Σi ` ρi}i . ρ′

Γ ` {Σi ` τi → ρi}i . τ ′ → ρ′

We derive the usual subtyping rules:

Γ ` ρ . τ1 Γ ` ρ . τ2

Γ ` ρ . τ1 ∩ τ2
Γ ` (τ → ρ1) ∩ (τ → ρ2) . τ → ρ1 ∩ ρ2
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Push

Γ′
1 = Γ1, (x : τ1)

Γ′
2 = Γ2, (x : τ2)

M ⇒ a ` Γ′
1 : ρ1

N ⇒ b ` Γ2 : τ2
G ⇒ Γ2 ` (Σ1 ` τ1 → ρ1) . τ2 → ρ2

@

N

G

λ

G

λ

M

Γ2 Γ1 Γ′
1

ρ2

τ2τ2 → ρ2

τ1 → ρ1

ρ1

τ1

@

LG

N

λ

MM

λ

@

RG

LG

Γ2 Γ1 Γ′
1

ρ2

ρ1

τ1

τ2

τ1 → ρ1

ρ1

τ1

@

N
λ

RG

M

LG

λ

M

RG

LG

Γ2 Γ′
2 Γ′

1

ρ2

τ2τ2 → ρ2

ρ2

ρ1

τ1

τ2

RG

M

LG

N

M

RG

LG

Γ2 Γ1

ρ2

ρ1

τ1

τ2
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GADTs

Existentials

coherent ∃(α : κ) τ
def
= ∀β (∀(α : κ) (τ → β))→ β

pack a def
= λx x a unpack a as x in b def

= a (λx b)

incoherent Σ(α : κ) τ
def
= ∀β (Π(α : κ) (τ → β))→ β

ipack a def
= λx x ♦ a iunpack a as x in b def

= a (∂ λx b)

Termα
def
= Σ(β1, β2 | α ≡ (β1 → β2))α
+ ∃β Term (β → α)× Termβ

Lam x def
= inl (ipack x) : ∀α ∀β (α→ β)→ Term (α→ β)

App y x def
= inr (pack 〈y , x〉) : ∀α ∀β Term (α→ β)→ Termα→ Termβ

eval x = case x of {inl x1 7→ iunpack x1 as y in y
| inr x2 7→ unpack x2 as y in (eval (π1 y)) (eval (π2 y))}
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Why block abstraction?
We studied an alternate version of Fcc where type and coercion abstraction
are separate constructs. Namely,

the usual type abstraction ∀α τ and
the coercion abstraction (τ1 . τ2)⇒ ρ.

However, the test of coherence has to be done by block since some
coercions hold only for some particular instances of the context.

The additional flexibility we get is thus negligible, since they are just
η-expansion variants.
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Weakening
To simplify readability, we add a proof of coercion weakening.

Weak
G ⇒ Γ ` (Σ ` τ) . ρ

∗G ⇒ Γ ` τ . ρ

Γ ρ

G

+∅ τ

+Σ τ
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Extremes
Top and bottom permit to illustrate subtyping.

Coercion rules

Γ >
>

+∅ τ Top
> ⇒ Γ ` τ . >

Γ τ

⊥τ

+∅ ⊥ Bot
⊥τ ⇒ Γ ` ⊥ . τ
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Existentials
Existential types are inherently difficult (breaks preservation).

(x1 x2 : ∃α (α→ Int)× α) ` unpack α, x = b x1 x2 in (π1 x) (π2 x) : Int

erases to

let x = b x1 x2 in (π1 x) (π2 x)  (π1 (b x1 x2)) (π2 (b x1 x2))

There is at least four solutions:
1 keep the calculus and use dependent types,
2 keep the calculus and use a standardization argument (Riba 2007),
3 change the calculus and use a simple argument, or
4 use the CPS encoding.

Only the second solution does not restore preservation.
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Eta-expansion

Γ τ1 × τ2

G1 × G2

+Σ τ ′1 × τ ′2

Γ τ → ρ

G1 → G2

+Σ τ ′ → ρ′

Γ τ1 × τ2

〈 , 〉

G1

π1

τ ′1 × τ ′2

+Σ τ ′1

Γ τ1

G2

π2

τ ′1 × τ ′2

+Σ τ ′2

Γ τ2

Γ τ → ρ

λx

G2

@

τ ′ → ρ′
G1

x

τ

τ ′

+Σ ρ′

Γ, (x : τ) ρ
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Eta-expansion: distributivity

+ α

∀α τ → ρ

τ → ρ
[α]

(∀α τ)→ ∀αρ
[α] → Λα

Λα ⇒ Γ ` ( α ` ρ) . ∀αρ [α] ⇒ Γ, α ` ∀α τ . τ
[α]→ Λα ⇒ Γ ` ( α ` τ → ρ) . (∀α τ)→ ∀αρ
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Recursive types
To subsume Constraint ML, we need equi-recursive types.

We extend
types with recursive types µα τ ,
coercions with folding and unfolding, and
propositions with coinduction.

The two rules of equi-recursive types (Amadio, Cardelli, 1993) are
admissible:

EquivPeriod
α 7→ ρ : WF Σ ` τ1 ≡ ρ[α/τ1] Σ ` ρ[α/τ2] ≡ τ2

Σ ` τ1 ≡ τ2

EtaMu
Σ, (α : ?, β : ? | α . β) ` τ . ρ

Σ ` µα τ . µβ ρ
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Type functions
It is possible to extend the type system with arrow kinds. The result kind
may mention the argument variable.

κ ::= ? | 1 | κ× κ | (α : κ)→ κ | {α : κ | P} Kinds

The design of this extension is not satisfactory yet.
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Subterm property
We will only consider erasable type system features for type systems
satisfying the subterm property.

Subterm property
A type system satisfies the subterm property when the term judgment
premises of its term typing rules only consider subterms of the conclusion.

OK
Γ ` τ type

Γ, (x : τ) ` a : ρ

Γ ` λx a : τ → ρ

OK
Γ, α ` a : τ

Γ ` a : ∀α τ

BAD
x /∈ fv(a)

Γ ` λx a x : τ → ρ

Γ ` a : τ → ρ

Type systems satisfying the subterm property annotate the exact program
we are interested in, not an equivalent one.
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Comparison with FC
FC has only type equality coercions:

coercions do not bind
coercions are structural (head type constructors are equal)
(∀α τ → ρ) = (τ → ∀αρ) not a coercion

coercions can be decomposed
subject reduction (and bisimulation) holds

FC has coherent coercion abstraction only at top-level:

coercion abstractions and applications cannot be fully erased

FC has a kind equality and an heterogeneous type equality.
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Example with subtyping
Consequence of extending subtyping to first-class coercions:

List module signature
∃(list : ?→ ? | ∀(α, β | α . β) listα . listβ) . . .

The notion of variance comes by construction and is not built-in. As such,
it can be extended.
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