Library minmax
Links: Index_v Table of contents Main page
Lemma le_min_r' : ∀ m n n', n ≤ n' → min m n ≤ n'.
Proof. intros; apply le_trans with (m := n); auto; apply le_min_r. Qed.
Lemma le_min_l' : ∀ m n m', m ≤ m' → min m n ≤ m'.
Proof. intros; apply le_trans with (m := m); auto; apply le_min_l. Qed.
Lemma le_max_r' : ∀ m n n', n' ≤ n → n' ≤ max m n.
Proof. intros; apply le_trans with (m := n); auto; apply le_max_r. Qed.
Lemma le_max_l' : ∀ m n m', m' ≤ m → m' ≤ max m n.
Proof. intros; apply le_trans with (m := m); auto; apply le_max_l. Qed.
Ltac minmax :=
repeat (apply min_glb || apply max_lub);
let rec aux := omega || (apply le_n_S; aux)
|| (apply le_min_l'; aux) || (apply le_min_r'; aux)
|| (apply le_max_l'; aux) || (apply le_max_r'; aux)
in aux.