Library Flanguage

Require Import Omega.
Require Import Min.
Require Import Max.

Require Import set.
Require Import minmax.

Inductive Flanguage_v := .

Links: Index_v Table of contents Main page

Indexed Calculus

Definition

Terms

Terms are written a or b. They are all indexed with a fuel (or index) k which is the first argument of each construct.
Inductive term : Set :=

Variables Var k x, abstractions Lam k a, and applications App k a b are constructs related to arrow computational types.
| Var (k : nat) (x : nat)
| Lam (k : nat) (a : term)
| App (k : nat) (a : term) (b : term)

Pairs Pair k a b, and projections Fst k a and Snd k a are constructs related to product computational types.
| Unit (k : nat)
| Pair (k : nat) (a : term) (b : term)
| Fst (k : nat) (a : term)
| Snd (k : nat) (a : term)

(* sum *)
| Absurd (k : nat) (a : term)
| Inl (k : nat) (a : term)
| Inr (k : nat) (a : term)
| Match (k : nat) (a : term) (bl : term) (br : term)

Finally, generalizations Gen k a and instantiations Inst k a are related to incoherent polymorphic types, which are computational. Generalization is a weak reduction abstraction although it does not bind anything.
| Gen (k : nat) (a : term)
| Inst (k : nat) (a : term)
.

Functions

We define a few manipulations of indices and terms. The term map_fuel f a has the same structure as the a, but where each index k has been modified to f k. We lift predicates form indices to terms in unary_fuel for unary predicates and binary_fuel for binary predicates. For binary predicates, the two terms have to share a common structure.
Definition map_fuel (f : natnat) := fix g a :=
  match a with
    | Var k xVar (f k) x
    | Lam k aLam (f k) (g a)
    | App k a bApp (f k) (g a) (g b)
    | Unit kUnit (f k)
    | Pair k a bPair (f k) (g a) (g b)
    | Fst k aFst (f k) (g a)
    | Snd k aSnd (f k) (g a)
    | Absurd k aAbsurd (f k) (g a)
    | Inl k aInl (f k) (g a)
    | Inr k aInr (f k) (g a)
    | Match k a bl brMatch (f k) (g a) (g bl) (g br)
    | Gen k aGen (f k) (g a)
    | Inst k aInst (f k) (g a)
  end.

Definition unary_fuel f := fix g a :=
  match a with
    | Var k xf k
    | Lam k af k g a
    | App k a bf k g a g b
    | Unit kf k
    | Pair k a bf k g a g b
    | Fst k af k g a
    | Snd k af k g a
    | Absurd k af k g a
    | Inl k af k g a
    | Inr k af k g a
    | Match k a bl brf k g a g bl g br
    | Gen k af k g a
    | Inst k af k g a
  end.

Definition binary_fuel f := fix g a b :=
  match a, b with
    | Var j x, Var k yf j k x = y
    | Lam j a, Lam k bf j k g a b
    | App j a1 a2, App k b1 b2f j k g a1 b1 g a2 b2
    | Unit j, Unit kf j k
    | Pair j a1 a2, Pair k b1 b2f j k g a1 b1 g a2 b2
    | Fst j a, Fst k bf j k g a b
    | Snd j a, Snd k bf j k g a b
    | Absurd j a, Absurd k bf j k g a b
    | Inl j a, Inl k bf j k g a b
    | Inr j a, Inr k bf j k g a b
    | Match j a al ar, Match k b bl brf j k g a b g al bl g ar br
    | Gen j a, Gen k bf j k g a b
    | Inst j a, Inst k bf j k g a b
    | _, _False
  end.

We define a few common instantiations of these last three functions. The function lower k updates to k the indices greater than k. The binary predicate le_term a b holds when the term a is pointwise less or equal than the term b. Finally, the predicates term_le a k, term_lt a k, and term_ge a k say when the indices of the term a are all less or equal, less than, and greater or equal than k, respectively.
Definition lower k := map_fuel (fun jmin j k).
Definition le_term := binary_fuel le.
Definition term_le a k := unary_fuel (fun jj k) a.
Definition term_lt a k := unary_fuel (fun jj < k) a.
Definition term_ge a k := unary_fuel (fun jj k) a.
Hint Unfold lower le_term term_le term_lt term_ge.

Ltac destruct_binary a H :=
  destruct a; simpl in H; try (exfalso; exact H);
  match type of H with
    | _ _ _ _destruct H as [? [? [? ?]]]
| _ _ _destruct H as [? [? ?]]
| _ _destruct H
    | _idtac
  end.

We define a function to traverse terms and operating on its variables. The term traverse f i a has the same structure as a but for its variables Var k x that become f k x i. The level i indicates how deep we are in the term: it is incremented each time we cross a binder. The only binder of the Indexed Calculus is Lam and it binds only one term, so the recursive call uses the level 1 + i.
Definition traverse f := fix g i a :=
  match a with
  | Var k xf k x i
  | Lam k aLam k (g (1 + i) a)
  | App k a bApp k (g i a) (g i b)
  | Unit kUnit k
  | Pair k a bPair k (g i a) (g i b)
  | Fst k aFst k (g i a)
  | Snd k aSnd k (g i a)
  | Absurd k aAbsurd k (g i a)
  | Inl k aInl k (g i a)
  | Inr k aInr k (g i a)
  | Match k a bl brMatch k (g i a) (g (1 + i) bl) (g (1 + i) br)
  | Gen k aGen k (g i a)
  | Inst k aInst k (g i a)
  end.

We define the lifting function lift and substitution function subst using the traverse function with the lift_idx and subst_idx functions, respectively. The term lift d i a has the same structure as a but the variables greater or equal than i are incremented by d. The term subst b i a has the same structure as a but the variables greater than i are decremented by one and the variables equal to i are replaced with b lifted by i from level 0 and lowered with the index k of the variable. This lowering is necessary for lemma lower_subst and subst_lower.
Definition lift_idx d k x i := Var k (if le_gt_dec i x then d + x else x).
Definition lift d := traverse (lift_idx d).
Definition shift := lift 1.
Hint Unfold lift_idx lift shift.

Definition subst_idx b k x i :=
  match lt_eq_lt_dec x i with
    | inleft (left _) ⇒ Var k x
    | inleft (right _) ⇒ lower k (lift x 0 b)
    | inright _Var k (x - 1)
  end.
Definition subst b := traverse (subst_idx b).
Hint Unfold subst_idx subst.

Ltac subst_lift_var := repeat (match goal with
    | |- context[subst_idx] ⇒ unfold subst_idx
    | |- context[lift_idx] ⇒ unfold lift_idx
    | |- context[lt_eq_lt_dec ?x ?y] ⇒ destruct (lt_eq_lt_dec x y) as [[?|?]|?]; try (exfalso; omega); simpl; auto
    | |- context[le_gt_dec ?x ?y] ⇒ destruct (le_gt_dec x y); try (exfalso; omega); simpl; auto
  end).

Definition set := @set term.

Reduction

Evaluation contexts Ctx contain all one-hole contexts of depth one, but for Gen. This gives us strong reduction for all constructs but Gen, because the only role Gen is to block reduction. The meaning of Ctx is given by the fill function. The term fill c k a wraps the term a under the context c with index k.
Inductive Ctx : Set :=
| CtxLam
| CtxApp1 (b : term)
| CtxApp2 (a : term)
| CtxPair1 (b : term)
| CtxPair2 (a : term)
| CtxFst
| CtxSnd
| CtxAbsurd
| CtxInl
| CtxInr
| CtxMatch1 (bl : term) (br : term)
| CtxMatch2 (a : term) (br : term)
| CtxMatch3 (a : term) (bl : term)
(* NO CtxGen! *)
| CtxInst
.

Definition fill c k a :=
  match c with
    | CtxLamLam k a
    | CtxApp1 bApp k a b
    | CtxApp2 bApp k b a
    | CtxPair1 bPair k a b
    | CtxPair2 bPair k b a
    | CtxFstFst k a
    | CtxSndSnd k a
    | CtxAbsurdAbsurd k a
    | CtxInlInl k a
    | CtxInrInr k a
    | CtxMatch1 b1 b2Match k a b1 b2
    | CtxMatch2 b1 b2Match k b1 a b2
    | CtxMatch3 b1 b2Match k b1 b2 a
    | CtxInstInst k a
  end.

The reduction relation red has the usual rule of the Lambda Calculus modulo the notion of indices. The indices of redex nodes of the left-hand side of the reduction rule have to be strictly positive. The right-hand side of the reduction rule is lowered by the minimum of these first indices minus one. For example, the usual beta-reduction rule:

  red (App (Lam a) b) (subst b 0 a)
becomes:

  red (App (1 + k') (Lam (1 + k) a) b)
      (lower (min k' k) (subst b 0 a))
Similarly for the context rule RedCtx which lowers the index (which had to be strictly positive) of context node by one.
This index-manipulation is very brutal: it simplifies greatly the proof of strong normalization wf_der in Fnormalization_v of the untyped Indexed Calculus, but breaks confluence and some other reduction related properties that we have in the Lambda Calculus.
Inductive red : termtermProp :=
| RedCtx : k a a' c, red a a'red (fill c (1 + k) a) (fill c k a')
| RedApp : k k' a b, red (App (1 + k') (Lam (1 + k) a) b) (lower (min k' k) (subst b 0 a))
| RedFst : k k' a b, red (Fst (1 + k') (Pair (1 + k) a b)) (lower (min k' k) a)
| RedSnd : k k' a b, red (Snd (1 + k') (Pair (1 + k) a b)) (lower (min k' k) b)
| RedInl : k k' a bl br, red (Match (1 + k') (Inl (1 + k) a) bl br) (lower (min k' k) (subst a 0 bl))
| RedInr : k k' a bl br, red (Match (1 + k') (Inr (1 + k) a) bl br) (lower (min k' k) (subst a 0 br))
| RedInst : k k' a, red (Inst (1 + k') (Gen (1 + k) a)) (lower (min k' k) a)
.

Errors and valid terms

In order to define the notions of errors and valid terms, we need to define the notions of neutral terms and head normal forms. Neutral terms N are either variables and destructors, while head normal forms CN are constructors.
Definition N : set := fun a
  match a with
    | Var _ _True
    | Lam _ _False
    | App _ _ _True
    | Unit _False
    | Pair _ _ _False
    | Fst _ _True
    | Snd _ _True
    | Absurd _ _True
    | Inl _ _False
    | Inr _ _False
    | Match _ _ _ _True
    | Gen _ _False
    | Inst _ _True
  end.

Definition CN : set := fun a
  match a with
    | Var _ _False
    | Lam _ _True
    | App _ _ _False
    | Unit _True
    | Pair _ _ _True
    | Fst _ _False
    | Snd _ _False
    | Absurd _ _False
    | Inl _ _True
    | Inr _ _True
    | Match _ _ _ _False
    | Gen _ _True
    | Inst _ _False
  end.
Hint Unfold N CN.

Neutral terms and head normal forms partition the set of terms. A term is either neutral or in head normal form.
Lemma N_dec : a, {CN a} + {N a}.
Proof. destruct a; simpl; auto. Qed.

Lemma CN_N : a, CN aN aFalse.
Proof. destruct a; auto. Qed.

Head normal forms are preserved by substitution, reduction, and lifting of binary predicates, such as le_term.
Lemma CN_subst : a, CN a b i, CN (subst b i a).
Proof.
induction a; simpl; intros; auto.
subst_lift_var.
Qed.

Lemma CN_red : a b, red a bCN aCN b.
Proof.
induction 1; intros CNa; simpl in CNa; try (exfalso; exact CNa).
destruct c; simpl in *; auto.
Qed.

Lemma CN_le_term : a b, le_term a bCN aCN b.
Proof.
induction a; simpl; intros b ab CNa; try (exfalso; exact CNa);
destruct_binary b ab; simpl; exact I.
Qed.

We define predicates to know when a term is not the constructor of the arrow type, the product type, or the pi type. And we show that they are stable by substitution and lifting of binary predicates.
Definition NotArr a := k' a', a Lam k' a'.
Definition NotProd a := k' a' b', a Pair k' a' b'.
Definition NotSum a := k' a', a Inl k' a' a Inr k' a'.
Definition NotPi a := k' a', a Gen k' a'.
Hint Unfold NotArr NotProd NotSum NotPi.

Lemma NotArr_subst : a, CN aNotArr a b i, NotArr (subst b i a).
Proof.
induction a; simpl; intro CNa; try (exfalso; exact CNa);
intros; intro k'; intros; intro Heq; auto; inversion Heq; clear Heq; subst.
apply (H k' a eq_refl).
Qed.

Lemma NotArr_le_term : a b, le_term a bNotArr aNotArr b.
Proof.
induction a; simpl; intros b ab NAa; destruct_binary b ab;
intros k' a' Heq; inversion Heq; subst.
apply (NAa k a eq_refl).
Qed.

Lemma NotProd_subst : a, CN aNotProd a b i, NotProd (subst b i a).
Proof.
induction a; simpl; intro CNa; try (exfalso; exact CNa);
intros; intro k'; intros; intro Heq; auto; inversion Heq; clear Heq; subst.
apply (H k' a1 a2 eq_refl).
Qed.

Lemma NotProd_le_term : a b, le_term a bNotProd aNotProd b.
Proof.
induction a; simpl; intros b ab NPa; destruct_binary b ab;
intros k' a' b' Heq; inversion Heq; subst.
apply (NPa k a1 a2 eq_refl).
Qed.

Lemma NotSum_subst : a, CN aNotSum a b i, NotSum (subst b i a).
Proof.
induction a; simpl; intro CNa; try (exfalso; exact CNa);
intros; intro k'; intros; split; intro Heq; auto; inversion Heq; clear Heq; subst.
apply (proj1 (H k' a) eq_refl).
apply (proj2 (H k' a) eq_refl).
Qed.

Lemma NotSum_le_term : a b, le_term a bNotSum aNotSum b.
Proof.
induction a; simpl; intros b ab NAa; destruct_binary b ab;
intros k' a'; split; intros Heq; inversion Heq; subst.
apply (proj1 (NAa k a) eq_refl).
apply (proj2 (NAa k a) eq_refl).
Qed.

Lemma NotPi_subst : a, CN aNotPi a b i, NotPi (subst b i a).
Proof.
induction a; simpl; intro CNa; try (exfalso; exact CNa);
intros; intro k'; intros; intro Heq; auto; inversion Heq; clear Heq; subst.
apply (H k' a eq_refl).
Qed.

Lemma NotPi_le_term : a b, le_term a bNotPi aNotPi b.
Proof.
induction a; simpl; intros b ab NAa; destruct_binary b ab;
intros k' a'; intros Heq; inversion Heq; subst.
apply (NAa k a eq_refl).
Qed.

We can now define the set of errors Err. An error is either an immediate error or an error under any evaluation context. An immediate error happens when a destructor is applied to a wrong constructor. For example, the term App k a b is an error if the term a is a constructor which is not of the arrow type, because App is the destructor of the arrow type.
Inductive Err : set :=
| ErrCtx : k e c, Err eErr (fill c k e)
| ErrApp : k a b, CN aNotArr aErr (App k a b)
| ErrFst : k a, CN aNotProd aErr (Fst k a)
| ErrSnd : k a, CN aNotProd aErr (Snd k a)
| ErrAbsurd : k a, CN aErr (Absurd k a)
| ErrMatch : k a bl br, CN aNotSum aErr (Match k a bl br)
| ErrInst : k a, CN aNotPi aErr (Inst k a)
.

Valid terms are simply the complementary of errors. We write NV for neutral valid terms.
Definition V : set := Cmp Err.
Hint Unfold V.

Definition NV : set := Inter N V.

Properties

Variables are valid neutral terms. Term abstraction are valid if their body is valid too. Pairs are valid if their components are valid too.
Lemma V_Var : {k n}, V (Var k n).
Proof.
intros k n Herr; inversion Herr.
destruct c; inversion H.
Qed.

Lemma NV_Var : {k n}, NV (Var k n).
Proof. split; [exact I|apply V_Var]. Qed.

Lemma V_Unit : {k}, V (Unit k).
Proof.
intros k Herr; inversion Herr; auto.
destruct c; inversion H; clear H; subst; auto.
Qed.

Lemma V_Lam : {k a}, V aV (Lam k a).
Proof.
intros k a H Herr; inversion Herr; auto.
destruct c; inversion H0; clear H0; subst; auto.
Qed.

Lemma V_Pair : {k a b}, V aV bV (Pair k a b).
Proof.
intros k a b Ha Hb Herr; inversion Herr; auto.
destruct c; inversion H; clear H; subst; auto.
Qed.

Lemma V_Inl : {k a}, V aV (Inl k a).
Proof.
intros k a H Herr; inversion Herr; auto.
destruct c; inversion H0; clear H0; subst; auto.
Qed.

Lemma V_Inr : {k a}, V aV (Inr k a).
Proof.
intros k a H Herr; inversion Herr; auto.
destruct c; inversion H0; clear H0; subst; auto.
Qed.

Neutral terms behave like variables with respect to validity. When a term is valid after subsittution by a neutral, then it was also valid before the substitution.
Lemma V_subst_N : a b, N b i, V (subst b i a) → V a.
Proof.
intros a b Nb; induction a; intros i Va;
try (intros Errb; inversion Errb; clear Errb; subst);
try match goal with
  | H : fill ?c _ _ = _ |- _destruct c; inversion H; clear H; subst
end;
try match goal with
  | IH : _, _V ?a
  , H : Err ?a |- _eapply IH; [|exact H]; intro; apply Va; simpl
end.
(* 20: CtxLam *)
  replace (Lam k (subst b (S i) a)) with (fill CtxLam k (subst b (S i) a)) by reflexivity.
  apply ErrCtx; eauto.
(* 19: CtxApp1 *)
  replace (App k (subst b i a1) (subst b i a2))
    with (fill (CtxApp1 (subst b i a2)) k (subst b i a1)) by reflexivity.
  apply ErrCtx; eauto.
(* 18: CtxApp2 *)
  replace (App k (subst b i a1) (subst b i a2))
    with (fill (CtxApp2 (subst b i a1)) k (subst b i a2)) by reflexivity.
  apply ErrCtx; eauto.
(* 17: App *)
  apply Va; simpl.
  apply ErrApp.
  apply CN_subst; auto.
  apply NotArr_subst; auto.
(* 16: CtxPair1 *)
  replace (Pair k (subst b i a1) (subst b i a2))
    with (fill (CtxPair1 (subst b i a2)) k (subst b i a1)) by reflexivity.
  apply ErrCtx; eauto.
(* 15: CtxPair2 *)
  replace (Pair k (subst b i a1) (subst b i a2))
    with (fill (CtxPair2 (subst b i a1)) k (subst b i a2)) by reflexivity.
  apply ErrCtx; eauto.
(* 14: CtxFst *)
  replace (Fst k (subst b i a)) with (fill CtxFst k (subst b i a)) by reflexivity.
  apply ErrCtx; eauto.
(* 13: Fst *)
  apply Va; simpl.
  apply ErrFst.
  apply CN_subst; auto.
  apply NotProd_subst; auto.
(* 12: CtxSnd *)
  replace (Snd k (subst b i a)) with (fill CtxSnd k (subst b i a)) by reflexivity.
  apply ErrCtx; eauto.
(* 11: Snd *)
  apply Va; simpl.
  apply ErrSnd.
  apply CN_subst; auto.
  apply NotProd_subst; auto.
(* 10: CtxAbsurd *)
  replace (Absurd k (subst b i a)) with (fill CtxAbsurd k (subst b i a)) by reflexivity.
  apply ErrCtx; eauto.
(* 9: Absurd *)
  apply Va; simpl.
  apply ErrAbsurd.
  apply CN_subst; auto.
(* 8: CtxInl *)
  replace (Inl k (subst b i a)) with (fill CtxInl k (subst b i a)) by reflexivity.
  apply ErrCtx; eauto.
(* 7: CtxInr *)
  replace (Inr k (subst b i a)) with (fill CtxInr k (subst b i a)) by reflexivity.
  apply ErrCtx; eauto.
(* 6: CtxMatch1 *)
  replace (Match k (subst b i a1) (subst b (S i) a2) (subst b (S i) a3))
    with (fill (CtxMatch1 (subst b (S i) a2) (subst b (S i) a3)) k (subst b i a1)) by reflexivity.
  apply ErrCtx; eauto.
(* 5: CtxMatch2 *)
  replace (Match k (subst b i a1) (subst b (S i) a2) (subst b (S i) a3))
    with (fill (CtxMatch2 (subst b i a1) (subst b (S i) a3)) k (subst b (S i) a2)) by reflexivity.
  apply ErrCtx; eauto.
(* 4: CtxMatch3 *)
  replace (Match k (subst b i a1) (subst b (S i) a2) (subst b (S i) a3))
    with (fill (CtxMatch3 (subst b i a1) (subst b (S i) a2)) k (subst b (S i) a3)) by reflexivity.
  apply ErrCtx; eauto.
(* 3: Match *)
  apply Va; simpl.
  apply ErrMatch.
  apply CN_subst; auto.
  apply NotSum_subst; auto.
(* 2: CtxInst *)
  replace (Inst k (subst b i a)) with (fill CtxInst k (subst b i a)) by reflexivity.
  apply ErrCtx; eauto.
(* 1: Gen *)
  apply Va; simpl.
  apply ErrInst.
  apply CN_subst; auto.
  apply NotPi_subst; auto.
Qed.

We now have some commutation and fusion lemma about lifting, substitution, reduction and indices functions and predicates.
Lemma lift_0 : a i, lift 0 i a = a.
Proof. induction a; intros i; simpl; [subst_lift_var|..]; f_equal; auto. Qed.

Lemma unary_fuel_1 : (f g : natProp), ( j, f jg j) →
   a, unary_fuel f aunary_fuel g a.
Proof.
intros f g fg; induction a; simpl; intros H;
repeat (match goal with
  | H : _ _ |- _destruct H
  | |- _ _split
end; auto); auto.
Qed.

Lemma unary_fuel_2 : (g f1 f2 : natProp), ( j, f1 jf2 jg j) →
   a, unary_fuel f1 aunary_fuel f2 aunary_fuel g a.
Proof.
intros g f1 f2 fg; induction a; simpl; intros H1 H2;
repeat (match goal with
  | H : _ _ |- _destruct H
  | |- _ _split
end; auto); auto.
Qed.

Lemma unary_fuel_map : (f : natProp) upd,
  ( k, f kf (upd k)) →
   a, unary_fuel f aunary_fuel f (map_fuel upd a).
Proof.
intros f upd fupd; induction a; intros H; simpl in *;
repeat (match goal with
  | H : _ _ |- _destruct H
  | |- _ _split
end; auto); auto.
Qed.

Lemma unary_fuel_map_trivial : (f : natProp) upd,
  ( k, f (upd k)) → a, unary_fuel f (map_fuel upd a).
Proof.
intros f upd fupd; induction a; simpl in *;
repeat (match goal with
  | H : _ _ |- _destruct H
  | |- _ _split
end; auto); auto.
Qed.

Lemma map_fuel_lift : d f a i,
  map_fuel f (lift d i a) = lift d i (map_fuel f a).
Proof. intros d f a; induction a; intros i; simpl; f_equal; auto. Qed.

Lemma lower_lift : d k a i,
  lower k (lift d i a) = lift d i (lower k a).
Proof. intros d k a i; apply map_fuel_lift. Qed.

Lemma lower_lower : k k' a, lower k (lower k' a) = lower (min k' k) a.
Proof. induction a; simpl; f_equal; auto; rewrite min_assoc; reflexivity. Qed.

Lemma lower_subst : b k a i,
  lower k (subst b i a) = subst b i (lower k a).
Proof.
intros b k a; induction a; intros i; simpl; f_equal; auto.
unfold subst_idx; destruct (lt_eq_lt_dec x i) as [[?|?]|?]; simpl; auto.
rewrite lower_lower; reflexivity.
Qed.

Lemma lift_lift : a d i j l, lift d (j + l) (lift (i + j) l a) = lift (i + d + j) l a.
Proof.
induction a; intros d i j l; simpl; auto; [| |f_equal; auto ..].
(* Var *) subst_lift_var; f_equal; omega.
(* Lam *) f_equal; rewrite plus_n_Sm; apply IHa.
(* Match2 *) rewrite plus_n_Sm; auto.
(* Match3 *) rewrite plus_n_Sm; auto.
Qed.

Lemma lift_subst : a b d i j,
  lift d j (subst b (i + j) a) = subst b (i + d + j) (lift d j a).
Proof.
induction a; intros b d i j; simpl; auto; [| |f_equal; auto..].
(* Var *)
  subst_lift_var; [|f_equal; omega].
  rewrite <- lower_lift; f_equal.
  replace j with (j + 0) by omega; subst.
  rewrite lift_lift.
  f_equal; omega.
(* Lam *)
  f_equal; rewrite plus_n_Sm; rewrite IHa; f_equal; omega.
(* Match2 *)
  rewrite plus_n_Sm; rewrite IHa2; f_equal; omega.
(* Match2 *)
  rewrite plus_n_Sm; rewrite IHa3; f_equal; omega.
Qed.

Lemma subst_lift : a b d i l,
  subst b (i + l) (lift (d + 1 + i) l a) = lift (d + i) l a.
Proof.
induction a; intros b d i l; simpl; auto; [| |f_equal; auto..].
(* Var *) subst_lift_var; f_equal; omega.
(* Lam *) f_equal; rewrite plus_n_Sm; rewrite IHa; auto.
(* Match2 *) rewrite plus_n_Sm; auto.
(* Match3 *) rewrite plus_n_Sm; auto.
Qed.

Lemma subst_lift_0 : a b, subst b 0 (lift 1 0 a) = a.
Proof. intros a b; pose proof (subst_lift a b 0 0 0); simpl in *; rewrite H; apply lift_0. Qed.

Lemma subst_subst : a b bd d i,
  subst bd (d + i) (subst b i a) = subst (subst bd d b) i (subst bd (1 + d + i) a).
Proof.
induction a; intros b bd d i; simpl; auto;
try solve [f_equal; first [rewrite IHa|rewrite IHa1|rewrite IHa2]; reflexivity].
(* Var *)
  subst_lift_var.
  (* *)
    rewrite <- lower_subst; f_equal.
    replace (subst bd d) with (subst bd (d + 0)) by (f_equal; omega).
    rewrite lift_subst; f_equal; omega.
  (* *)
    rewrite <- lower_subst; f_equal.
    replace i with (i + 0) by omega.
    replace x with (d + 1 + i) by omega.
    rewrite subst_lift.
    f_equal; omega.
(* Lam *)
  f_equal.
  rewrite plus_n_Sm.
  rewrite IHa; reflexivity.
(* Match *)
  f_equal.
  rewrite IHa1; reflexivity.
  rewrite plus_n_Sm; rewrite IHa2; reflexivity.
  rewrite plus_n_Sm; rewrite IHa3; reflexivity.
Qed.

Lemma subst_subst_0 : a b bd d,
  subst bd d (subst b 0 a) = subst (subst bd d b) 0 (subst bd (1 + d) a).
Proof.
intros.
replace d with (d + 0) by omega.
rewrite subst_subst; repeat f_equal; omega.
Qed.

Lemma subst_subst_0_0 : a b bd,
  subst bd 0 (subst b 0 a) = subst (subst bd 0 b) 0 (subst bd 1 a).
Proof. intros; rewrite subst_subst_0; repeat f_equal; omega. Qed.

Lemma binary_fuel_map : (op : natnatProp) upd' upd,
  ( k' k, op k' kop (upd' k') (upd k)) →
   a' a, binary_fuel op a' abinary_fuel op (map_fuel upd' a') (map_fuel upd a).
Proof.
intros op upd' upd H a'.
induction a'; intros; destruct_binary a H0; simpl; auto.
Qed.

Lemma binary_fuel_map_trivial : (op : natnatProp) upd,
  ( k, op (upd k) k) →
   a, binary_fuel op (map_fuel upd a) a.
Proof. intros op upd H a; induction a; simpl; auto. Qed.

Lemma binary_fuel_trans : (op : natnatProp),
  ( k1 k2 k3, op k1 k2op k2 k3op k1 k3) →
   a1 a2 a3, binary_fuel op a1 a2binary_fuel op a2 a3binary_fuel op a1 a3.
Proof.
intros op H a1.
induction a1; intros; destruct_binary a2 H0; destruct_binary a3 H1; simpl;
repeat split; first [omega|eauto].
Qed.

Lemma binary_fuel_refl : (op : natnatProp),
  ( k, op k k) → a, binary_fuel op a a.
Proof. intros op H a; induction a; simpl; try split; first [omega|eauto]. Qed.

Lemma le_term_lower : k' k a' a, k' kle_term a' a
  le_term (lower k' a') (lower k a).
Proof. intros; apply binary_fuel_map; intros; auto; minmax. Qed.

Lemma le_term_lower_trivial : k a, le_term (lower k a) a.
Proof. intros; apply binary_fuel_map_trivial; intros; minmax. Qed.

Lemma binary_fuel_lift : op d a' a i, binary_fuel op a' a
  binary_fuel op (lift d i a') (lift d i a).
Proof. induction a'; intros; destruct_binary a H; subst; simpl; auto. Qed.

Lemma le_term_subst : a' a b' b i, le_term b' ble_term a' a
  le_term (subst b' i a') (subst b i a).
Proof.
induction a'; intros; destruct_binary a H0; subst; simpl; auto.
(* Var *)
  unfold subst_idx.
  destruct (lt_eq_lt_dec x0 i) as [[?|?]|?]; subst; simpl; auto.
  rewrite 2 lower_lift.
  apply binary_fuel_lift.
  apply binary_fuel_map; auto.
  intros; minmax.
Qed.

Lemma le_term_red : a a' b', le_term a' ared a' b' b, red a b le_term b' b.
Proof.
intros a a' b' lea Hred'; generalize a lea; clear a lea.
induction Hred'; intros; [destruct c|..]; destruct_binary a0 lea;
try match goal with
  | [ H1 : _, le_term ?a __
    , H2 : le_term ?a _ |- _ ] ⇒ destruct (H1 _ H2) as [? [? ?]]; clear H1 H2
end;
try match goal with
  | [ H : S _ ?k |- _ ] ⇒ destruct k; [inversion H|]
end.
(* 20: CtxLam *)
   (Lam k0 x); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0 x CtxLam); auto.
(* 19: CtxApp1 *)
   (App k0 x a0_2); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0_1 x (CtxApp1 a0_2)); auto.
(* 18: CtxApp2 *)
   (App k0 a0_1 x); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0_2 x (CtxApp2 a0_1)); auto.
(* 17: CtxPair1 *)
   (Pair k0 x a0_2); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0_1 x (CtxPair1 a0_2)); auto.
(* 16: CtxPair2 *)
   (Pair k0 a0_1 x); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0_2 x (CtxPair2 a0_1)); auto.
(* 15: CtxFst *)
   (Fst k0 x); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0 x CtxFst); auto.
(* 14: CtxSnd *)
   (Snd k0 x); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0 x CtxSnd); auto.
(* 13: CtxAbsurd *)
   (Absurd k0 x); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0 x CtxAbsurd); auto.
(* 12: CtxInl *)
   (Inl k0 x); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0 x CtxInl); auto.
(* 11: CtxInr *)
   (Inr k0 x); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0 x CtxInr); auto.
(* 10: CtxMatch1 *)
   (Match k0 x a0_2 a0_3); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0_1 x (CtxMatch1 a0_2 a0_3)); auto.
(* 9: CtxMatch2 *)
   (Match k0 a0_1 x a0_3); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0_2 x (CtxMatch2 a0_1 a0_3)); auto.
(* 8: CtxMatch3 *)
   (Match k0 a0_1 a0_2 x); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0_3 x (CtxMatch3 a0_1 a0_2)); auto.
(* 7: CtxInst *)
   (Inst k0 x); split; [|simpl; repeat split; first [omega|auto]].
  apply (RedCtx k0 a0 x CtxInst); auto.
(* 6: App *)
  destruct_binary a0_1 H0.
  destruct k1; [inversion H0|].
   (lower (min k0 k1) (subst a0_2 0 a0_1)).
  split; [apply RedApp|].
  apply le_term_lower; [minmax|].
  apply le_term_subst; assumption.
(* 5: Fst *)
  destruct_binary a0 H0.
  destruct k1; [inversion H0|].
   (lower (min k0 k1) a0_1).
  split; [apply RedFst|].
  apply le_term_lower; [minmax|assumption].
(* 4: Snd *)
  destruct_binary a0 H0.
  destruct k1; [inversion H0|].
   (lower (min k0 k1) a0_2).
  split; [apply RedSnd|].
  apply le_term_lower; [minmax; omega|assumption].
(* 3: Inl *)
  destruct_binary a0_1 H0.
  destruct k1; [inversion H0|].
   (lower (min k0 k1) (subst a0_1 0 a0_2)).
  split; [apply RedInl|].
  apply le_term_lower; [minmax|].
  apply le_term_subst; assumption.
(* 2: Inr *)
  destruct_binary a0_1 H0.
  destruct k1; [inversion H0|].
   (lower (min k0 k1) (subst a0_1 0 a0_3)).
  split; [apply RedInr|].
  apply le_term_lower; [minmax|].
  apply le_term_subst; assumption.
(* 1: Inst *)
  destruct_binary a0 H0.
  destruct k1; [inversion H0|].
   (lower (min k0 k1) a0).
  split; [apply RedInst|].
  apply le_term_lower; [minmax; omega|assumption].
Qed.

Lemma term_ge_dec : a k, term_ge a (1 + k) → term_ge a k.
Proof.
intros a k H.
eapply unary_fuel_1; [|apply H].
simpl; intros; omega.
Qed.

Lemma term_ge_lower : k k', k' k a, term_ge a kterm_ge (lower k' a) k.
Proof.
intros k k' kk' a H.
eapply unary_fuel_map; [|apply H].
intros; apply min_glb; omega.
Qed.

Lemma unary_fuel_traverse : (f : natProp) g, ( k x i, f kunary_fuel f (g k x i)) →
   a i, unary_fuel f aunary_fuel f (traverse g i a).
Proof.
intros f g fg; induction a; intros i H; simpl in *;
repeat (match goal with
  | H : _ _ |- _destruct H
  | |- _ _split
  | |- _ _omega
end; auto); auto.
Qed.

Lemma unary_fuel_lift : f d a i, unary_fuel f aunary_fuel f (lift d i a).
Proof.
intros f d a i H.
apply unary_fuel_traverse; [|apply H].
intros k x l fk; subst_lift_var.
Qed.

Lemma term_ge_lift : d a k i, term_ge a kterm_ge (lift d i a) k.
Proof. intros d a k i H; apply unary_fuel_lift; apply H. Qed.

Lemma unary_fuel_subst : (f : natProp), ( j k, f jf kf (min j k)) →
   a b i, unary_fuel f aunary_fuel f bunary_fuel f (subst b i a).
Proof.
intros f Hf a b i Ha Hb.
apply unary_fuel_traverse; [|apply Ha].
intros k x l fk; subst_lift_var.
apply unary_fuel_map; auto.
apply unary_fuel_lift; apply Hb.
Qed.

Lemma term_ge_subst : a k b i, term_ge a kterm_ge b kterm_ge (subst b i a) k.
Proof.
intros a k b i Ha Hb.
apply unary_fuel_subst; auto.
intros j1 j2; apply min_glb.
Qed.

Lemma unary_fuel_red : (f g : natProp),
  ( k, f (S k) → g k) → ( k, f kg k) → ( j k, g jg kg (min j k)) →
   a b, red a bunary_fuel f aunary_fuel g b.
Proof.
intros f g HS Hinc Hmin a b Hred; induction Hred; [destruct c|..]; simpl; intros Ha;
repeat (match goal with
  | H : unary_fuel f ?a |- unary_fuel g ?aapply unary_fuel_1 with (f := f); [apply Hinc|apply H]
  | H : _ _ |- _destruct H
  | |- _ _split
  | |- _ _omega
end; auto); auto.
(* App *)
  apply unary_fuel_map; [|apply unary_fuel_subst]; auto; apply unary_fuel_1 with (f := f); auto.
(* Fst *) apply unary_fuel_map; auto; apply unary_fuel_1 with (f := f); auto.
(* Snd *) apply unary_fuel_map; auto; apply unary_fuel_1 with (f := f); auto.
(* Inl *)
  apply unary_fuel_map; [|apply unary_fuel_subst]; auto; apply unary_fuel_1 with (f := f); auto.
(* Inr *)
  apply unary_fuel_map; [|apply unary_fuel_subst]; auto; apply unary_fuel_1 with (f := f); auto.
(* Inst *) apply unary_fuel_map; auto; apply unary_fuel_1 with (f := f); auto.
Qed.

Lemma term_ge_red : a b k, red a bterm_ge a (1 + k) → term_ge b k.
Proof.
intros a b k Hred Ha.
eapply unary_fuel_red; [| | |apply Hred|apply Ha]; intros.
(* *) simpl in H; omega.
(* *) simpl in H; omega.
(* *) apply min_glb; omega.
Qed.

Lemma term_le_red : a b k, red a bterm_le a kterm_le b k.
Proof.
intros a b k Hred Ha.
eapply unary_fuel_red; [| | |apply Hred|apply Ha]; intros.
(* *) simpl in H; omega.
(* *) simpl in H; omega.
(* *) minmax.
Qed.

Lemma red_0 : a b, term_lt a 0 → red a bFalse.
Proof.
intros a b H Hred; induction Hred; [destruct c|..]; simpl in *;
repeat (match goal with
  | H : _ < 0 |- _inversion H
  | H : _ _ |- _destruct H
end; auto); auto.
Qed.

Lemma term_lt_red : a b k, red a bterm_lt a kterm_lt b k.
Proof.
intros a b k Hred Ha.
destruct k; [exfalso; eapply red_0; eauto|].
eapply unary_fuel_1; [|apply (term_le_red a b k Hred); eapply unary_fuel_1; [|apply Ha]];
instantiate; simpl; intros j H; omega.
Qed.

Lemma red_subst : a a' b, red a a' i, red (subst b i a) (subst b i a').
Proof.
intros a a' b Hred; induction Hred; [destruct c|..]; intros i; simpl.
(* 20: CtxLam *)
  eapply RedCtx with (k := k) (c := CtxLam); auto.
(* 19: CtxApp1 *)
  eapply RedCtx with (k := k) (c := CtxApp1 (subst b i b0)); auto.
(* 18: CtxApp2 *)
  eapply RedCtx with (k := k) (c := CtxApp2 (subst b i a0)); auto.
(* 17: CtxPair1 *)
  eapply RedCtx with (k := k) (c := CtxPair1 (subst b i b0)); auto.
(* 16: CtxPair2 *)
  eapply RedCtx with (k := k) (c := CtxPair2 (subst b i a0)); auto.
(* 15: CtxFst *)
  eapply RedCtx with (k := k) (c := CtxFst); auto.
(* 14: CtxSnd *)
  eapply RedCtx with (k := k) (c := CtxSnd); auto.
(* 13: CtxAbsurd *)
  eapply RedCtx with (k := k) (c := CtxAbsurd); auto.
(* 12: CtxInl *)
  eapply RedCtx with (k := k) (c := CtxInl); auto.
(* 11: CtxInr *)
  eapply RedCtx with (k := k) (c := CtxInr); auto.
(* 10: CtxMatch1 *)
  eapply RedCtx with (k := k) (c := CtxMatch1 (subst b (S i) bl) (subst b (S i) br)); auto.
(* 9: CtxMatch2 *)
  eapply RedCtx with (k := k) (c := CtxMatch2 (subst b i a0) (subst b (S i) br)); auto.
(* 8: CtxMatch3 *)
  eapply RedCtx with (k := k) (c := CtxMatch3 (subst b i a0) (subst b (S i) bl)); auto.
(* 7: CtxInst *)
  eapply RedCtx with (k := k) (c := CtxInst); auto.
(* 6: App *) rewrite <- lower_subst; rewrite subst_subst_0; apply RedApp.
(* 5: Fst *) rewrite <- lower_subst; apply RedFst.
(* 4: Snd *) rewrite <- lower_subst; apply RedSnd.
(* 3: Inl *) rewrite <- lower_subst; rewrite subst_subst_0; apply RedInl.
(* 2: Inr *) rewrite <- lower_subst; rewrite subst_subst_0; apply RedInr.
(* 1: Inst *) rewrite <- lower_subst; apply RedInst.
Qed.

Lemma subst_lower : a b i k, subst (lower k b) i (lower k a) = subst b i (lower k a).
Proof.
induction a; intros b i k0; simpl; [|f_equal; auto..].
(* Var *)
  subst_lift_var.
  rewrite <- lower_lift.
  rewrite lower_lower.
  f_equal.
  rewrite min_r; auto.
  apply le_min_r.
Qed.

Lemma red_lower : a b k, red a b
   b', red (lower (1 + k) a) b' le_term (lower k b) b'.
Proof.
intros a b k Hred; induction Hred; [destruct c; destruct IHHred as [? [? ?]]|..]; simpl lower.
(* 20: CtxLam *)
   (Lam (min k0 k) x); simpl; repeat split; auto.
  apply RedCtx with (c := CtxLam); auto.
(* 19: CtxApp1 *)
   (App (min k0 k) x (lower (S k) b)); simpl; repeat split; auto.
  apply RedCtx with (c := CtxApp1 (lower (S k) b)); auto.
  apply le_term_lower; auto; apply binary_fuel_refl; auto.
(* 18: CtxApp2 *)
   (App (min k0 k) (lower (S k) a0) x); simpl; repeat split; auto.
  apply RedCtx with (c := CtxApp2 (lower (S k) a0)); auto.
  apply le_term_lower; auto; apply binary_fuel_refl; auto.
(* 17: CtxPair1 *)
   (Pair (min k0 k) x (lower (S k) b)); simpl; repeat split; auto.
  apply RedCtx with (c := CtxPair1 (lower (S k) b)); auto.
  apply le_term_lower; auto; apply binary_fuel_refl; auto.
(* 16: CtxPair2 *)
   (Pair (min k0 k) (lower (S k) a0) x); simpl; repeat split; auto.
  apply RedCtx with (c := CtxPair2 (lower (S k) a0)); auto.
  apply le_term_lower; auto; apply binary_fuel_refl; auto.
(* 15: CtxFst *)
   (Fst (min k0 k) x); simpl; repeat split; auto.
  apply RedCtx with (c := CtxFst); auto.
(* 14: CtxSnd *)
   (Snd (min k0 k) x); simpl; repeat split; auto.
  apply RedCtx with (c := CtxSnd); auto.
(* 13: CtxAbsurd *)
   (Absurd (min k0 k) x); simpl; repeat split; auto.
  apply RedCtx with (c := CtxAbsurd); auto.
(* 12: CtxInl *)
   (Inl (min k0 k) x); simpl; repeat split; auto.
  apply RedCtx with (c := CtxInl); auto.
(* 11: CtxInr *)
   (Inr (min k0 k) x); simpl; repeat split; auto.
  apply RedCtx with (c := CtxInr); auto.
(* 10: CtxMatch1 *)
   (Match (min k0 k) x (lower (S k) bl) (lower (S k) br)); simpl; repeat split; auto.
  apply RedCtx with (c := CtxMatch1 (lower (S k) bl) (lower (S k) br)); auto.
  apply le_term_lower; auto; apply binary_fuel_refl; auto.
  apply le_term_lower; auto; apply binary_fuel_refl; auto.
(* 9: CtxMatch2 *)
   (Match (min k0 k) (lower (S k) a0) x (lower (S k) br)); simpl; repeat split; auto.
  apply RedCtx with (c := CtxMatch2 (lower (S k) a0) (lower (S k) br)); auto.
  apply le_term_lower; auto; apply binary_fuel_refl; auto.
  apply le_term_lower; auto; apply binary_fuel_refl; auto.
(* 8: CtxMatch3 *)
   (Match (min k0 k) (lower (S k) a0) (lower (S k) bl) x); simpl; repeat split; auto.
  apply RedCtx with (c := CtxMatch3 (lower (S k) a0) (lower (S k) bl)); auto.
  apply le_term_lower; auto; apply binary_fuel_refl; auto.
  apply le_term_lower; auto; apply binary_fuel_refl; auto.
(* 7: CtxInst *)
   (Inst (min k0 k) x); simpl; repeat split; auto.
  apply RedCtx with (c := CtxInst); auto.
(* 6: App *)
  eexists; split; [apply RedApp|].
  rewrite subst_lower; rewrite <- lower_subst.
  rewrite 2 lower_lower; (apply le_term_lower; [|apply binary_fuel_refl; auto]); minmax.
(* 5: Fst *)
  eexists; split; [apply RedFst|].
  rewrite 2 lower_lower; (apply le_term_lower; [|apply binary_fuel_refl; auto]); minmax.
(* 4: Snd *)
  eexists; split; [apply RedSnd|].
  rewrite 2 lower_lower; (apply le_term_lower; [|apply binary_fuel_refl; auto]); minmax.
(* 3: Inl *)
  eexists; split; [apply RedInl|].
  rewrite subst_lower; rewrite <- lower_subst.
  rewrite 2 lower_lower; (apply le_term_lower; [|apply binary_fuel_refl; auto]); minmax.
(* 2: Inr *)
  eexists; split; [apply RedInr|].
  rewrite subst_lower; rewrite <- lower_subst.
  rewrite 2 lower_lower; (apply le_term_lower; [|apply binary_fuel_refl; auto]); minmax.
(* 1: Inst *)
  eexists; split; [apply RedInst|].
  rewrite 2 lower_lower; (apply le_term_lower; [|apply binary_fuel_refl; auto]); minmax.
Qed.

Lemma term_le_lower : a k, term_le a ka = lower k a.
Proof.
induction a; intros ? H; simpl in *;
repeat (match goal with
  | |- context [min _ _] ⇒ rewrite min_l
  | H1 : _ _ |- _destruct H1
  | IHa : _,__ = _ |- _rewrite <- IHa; clear IHa
end; auto); auto.
Qed.

Lemma term_le_max : a k j, term_le a kterm_le a (max j k).
Proof.
intros; eapply unary_fuel_1; [|apply H]; instantiate; simpl; intros.
eapply le_trans; [apply H0|]; minmax.
Qed.

Lemma term_le_exists : a, k, term_le a k.
Proof.
induction a; repeat (match goal with
  | IHa : _, term_le _ _ |- _destruct IHa; clear IHa end).
(* 13: Var *) k; simpl; auto.
(* 12: Lam *)
   (max k x); simpl; split; [minmax|].
  apply term_le_max; assumption.
(* 11: App *)
   (max k (max x x0)); simpl; split; [|split].
  minmax.
  repeat (apply term_le_max); assumption.
  apply term_le_max; rewrite max_comm.
  apply term_le_max; assumption.
(* 10: Unit *)
   k; simpl; omega.
(* 9: Pair *)
   (max k (max x x0)); simpl; split; [|split].
  apply le_max_l.
  repeat (apply term_le_max); assumption.
  apply term_le_max; rewrite max_comm.
  apply term_le_max; assumption.
(* 8: Fst *)
   (max k x); simpl; split.
  apply le_max_l.
  apply term_le_max; assumption.
(* 7: Snd *)
   (max k x); simpl; split.
  apply le_max_l.
  apply term_le_max; assumption.
(* 6: Absurd *)
   (max k x); simpl; split.
  apply le_max_l.
  apply term_le_max; assumption.
(* 5: Inl *)
   (max k x); simpl; split.
  apply le_max_l.
  apply term_le_max; assumption.
(* 4: Inr *)
   (max k x); simpl; split.
  apply le_max_l.
  apply term_le_max; assumption.
(* 3: Match *)
   (max k (max x (max x0 x1))); simpl; repeat split.
  apply le_max_l.
  repeat (apply term_le_max); assumption.
  apply term_le_max; apply term_le_max; rewrite max_comm.
  apply term_le_max; assumption.
  apply term_le_max; rewrite max_comm; apply term_le_max; assumption.
(* 2: Gen *)
   (max k x); simpl; split.
  apply le_max_l.
  apply term_le_max; assumption.
(* 1: Inst *)
   (max k x); simpl; split.
  apply le_max_l.
  apply term_le_max; assumption.
Qed.

Lemma term_lt_exists : a, k, term_lt a k.
Proof.
intros a; destruct (term_le_exists a).
(1 + x).
eapply unary_fuel_1; [|apply H].
simpl; intros j ?; omega.
Qed.

Lemma term_le_min : a k j, term_le a jterm_le a kterm_le a (min j k).
Proof.
intros a k j aj ak; eapply unary_fuel_2; [|apply aj|apply ak]; instantiate; simpl; intros.
apply min_glb; assumption.
Qed.

Lemma term_lt_min : a k j, term_lt a jterm_lt a kterm_lt a (min j k).
Proof.
intros a k j aj ak; eapply unary_fuel_2; [|apply aj|apply ak]; instantiate; simpl; intros.
apply min_glb; assumption.
Qed.

Lemma binary_fuel_unary : (op : natnatProp) (f : natProp),
  ( j k, op j kf kf j) →
   a b, binary_fuel op a bunary_fuel f bunary_fuel f a.
Proof.
intros op f opf; induction a; intros b ab fb; destruct_binary b ab; subst; simpl in *;
repeat (match goal with
  | H : _ _ |- _destruct H
  | |- _ _split
  | Hop : op ?j ?k, Hf : f ?k |- f ?japply (opf _ _ Hop Hf)
  | IHa : _, ___ _ ?a
    , Hop : binary_fuel op ?a ?b
    , Hf : unary_fuel f ?b
    |- unary_fuel f ?aapply (IHa b Hop Hf)
end; auto); auto.
Qed.

Lemma le_term_le : a b k, le_term a bterm_le b kterm_le a k.
Proof.
intros a b k ab bk; eapply binary_fuel_unary; [|apply ab|apply bk].
intros; omega.
Qed.

Lemma le_term_lt : a b k, le_term a bterm_lt b kterm_lt a k.
Proof.
intros a b k ab bk; eapply binary_fuel_unary; [|apply ab|apply bk].
intros; omega.
Qed.

Lemma lt_term_le : a j k, term_lt a jj kterm_lt a k.
Proof.
intros a j k aj jk; eapply unary_fuel_1; [|apply aj].
simpl; intros; omega.
Qed.

Lemma term_lt_0 : a, term_lt a 0 → False.
Proof.
destruct a; simpl; intros; repeat
match goal with
  | H : _ _ |- _destruct H
  | H : ?k < 0 |- _inversion H
end.
Qed.